Paradigmaváltás a táncművészetben: a mozgás tudományos megközelítése

Authors

  • Ferenc Tamás Adamovich Hungarian Academy of Arts, Research Institute of Art Theory and Methodology

DOI:

https://doi.org/10.46522/S.2025.01.4

Keywords:

affective movement pedagogy, AI, motion capture

Abstract

Paradigm Shift in Dance: the Scientific Approach to Movement
In my paper, I would like to briefly review the main periods of dance history in the 20th century and the changes in the approach to dance art, from which I conclude that a new system approach can be defined. The paradigm shift is made possible by the existence of measurement tools that allow us to obtain information about the properties of movements, even during movement, that are not visible to the naked eye. By using the measurement results of technical tools, we can restructure existing movements. We can call this process a paradigm shift because the integration of technical tools helps the dancer, teacher and choreographer to understand the kinematic properties of movement more precisely, regardless of the dance form language, so that they can define and use gestures and movements even more accurately. Such tools include motion capture, electroencephalography, electromyography and force plate.
The scientific approach to movement can be successfully used in the development of several innovative directions, to which I am attempting to contribute by developing a system of affective movement pedagogy. Instrumental examinations can not only help in understanding movement, but also in digitizing movements, thus more accurately preserving and recording them, which was also attempted in the performing arts environment in the 20th century. The integration of instrumental measurement of movement can promote the broad researchability of human movement, and with it the development of the science of dance and theatre.

References

ADAMOVICH, Ferenc Tamás, 2022. „A multimodális vizsgálatok szerepe az affektív mozgáspedagógia szemszögéből a kinesztetikus reprezentációt vizsgálva”. VIII. Nemzetközi Tánctudományi Konferencia (Magyar Táncművészeti Egyetem) – Tánc a változó világban konferenciakötet, 2022. ISBN: 978-615-5852-27-5.

ADAMOVICH, Ferenc Tamás, 2025. „Affektív mozgáspedagógia”, In: Theatron 16, 2. sz. (2022) online folyóirat, 7. hozzáférés: 2025.01.13, https://theatron.hu/theatron_cikkek/affektiv-mozgaspedagogia/.

ARISTIDOU, A., STAVRAKIS, E., CHRYSANTHOU, Y., 2014. „Motion Analysis for Folk Dance Evaluation”. In GCH (pp. 55-64).

BÁNYAI, Éva – VARGA, Katalin (szerk.), 2014. Affektív pszichológia, Budapest, Medicina Könyvkiadó.

BRADLEY, K. K., 2008. Rudolf Laban. Routledge.

DIAMOND, D.M., 2005. “Cognitive, endocrine and mechanistic perspectives on non-linear relationships between arousal and brain function,” Nonlinearity in Biology, Toxicology, and Medicine, vol. 3, pp. 1–7.

DIAMOND, D.M.,CAMPBELL, A.M.,PARK,et. al., 2007. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural plasticity, 2007.

EKMAN,, P., FRIESEN, W. V., & ELLSWORTH, P., 2013. Emotion in the human face: Guidelines for research and an integration of findings (Vol. 11). Elsevier.

LECOQ, Jacques, 2021. A költői test, ford. Valcz Péter, Budapest, Magyar Táncművészeti Egyetem.

LINDSAY, GW, 2020. Attention in Psychology, Neuroscience, and Machine Learning. Front. Comput. Neurosci.14:29. DOI: 10.3389/fncom.2020.00029.

Magyar Művészeti Akadémia MMKI ösztöndíjas adatlap, hozzáférés: 2025.01.13, https://osztondij.mma-mmki.hu/public-profiles/66.

RANDHAVANE, T., BHATTACHARYA, et. al. ,2019. Identifying emotions from walking using affective and deep features. arXiv preprint arXiv:1906.11884.

Downloads

Published

03-12-2025

How to Cite

Adamovich, F. T. (2025) “Paradigmaváltás a táncművészetben: a mozgás tudományos megközelítése”, Symbolon, 26(1 (48), pp. 37–48. doi: 10.46522/S.2025.01.4.